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J. Phys. A: Math. Gen. 15 (1982) 1393-1420. Printed in Great Briatin 

Infrared properties of forced magnetohydrodynamic 
turbulence 

J-D Fournier, P-L Sulem and A Pouquet 
CNRS, Observatoire de Nice, BP 252,06007 Nice Cedex, France 

Received 29 January 1981, in final form 19 August 1981 

Abstract. The dynamical renormalisation group (RG) is implemented to study the large- 
scale properties of incompressible conducting fluid stirred by random forces and currents. In 
contrast with Navier-Stokes turbulence, invariance properties and dimensional constraints 
do not alwaysprescribe the renormalisation of the couplings. In dimensions d > d,  = 2.8, the 
system displays two non-trivial regimes: a kinetic regime where the renormalisation of the 
transport coefficients is due to the kinetic small scales, and a magnetic regime where it is due 
to the magnetic small scales. The results for the magnetic regime are not identical with 
predictions from the direct interaction approximation; this is due to vertex renormalisation 
of the Lorentz force. In dimensions 2 s d s d,, with sufficiently strong external currents, 
there is no stable fixed point: run away of the figurative point occurs, making the RG 
approach self-defeating. In two dimensions, with weak forces and currents, the absolute 
equilibrium results of Fyfe and Montgomery are recovered. 

1. Introduction 

Infrared properties of randomly stirred fluids are now amenable to the dynamical 
renormalisation group (RG) technique (Forster et a1 1976, 1977, Fournier 1977, de 
Dominicis and Martin 1979, Pouquet et a1 1978, Garnier etal 1981). This method is a 
truly perturbative procedure in contrast with all the available closures, ranging from 
dimensional analysis to truncated renormalised expansions. The prototype of such 
expansions is the direct interaction approximation (DIA) (Kraichnan 1959, Leslie 
1973), obtained by replacing the renormalised vertex by the bare vertex in the Dyson 
equation (Martin et a1 1973). Although this procedure may be crude, it gives useful 
insight in situations where the energetics may be described in terms of renormalised 
forcing and dissipation (Orszag 1977, Rose and Sulem 1978, Sulem et a1 1979). This is 
asymptotically correct for the largest scales of forced hydrodynamic turbulence, 
because the invariance of the Navier-Stokes equations under Galilean transformation 
prevents renormalisation of the vertex. RG calculations then corroborate DIA predic- 
tions. Besides, when the forcing is not renormalised, the crossover and the anomalous 
dimension of viscosity are prescribed by dimensional constraints (Fournier and Frisch 
1978, de Dominicis and Martin 1979); the RG is then needed only to predict universal 
numbers and logarithmic corrections. 

The situation is not so simple for conducting fluids when both large-scale random 
forces and random driving currents are prescribed. The corresponding magneto- 
hydrodynamic (MHD) equations involve two coupled fields (velocity and magnetic 
fields). There is then no reason to expect dimensional arguments to be correct and, as 
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we shall see, quite often they are not. Besides, when the Lorentz force is relevant, 
different couplings can tend to zero simultaneously. Then, the scaling laws are not 
prescribed by the sole fixed point; the discussion of relevance requires an actual 
asymptotic expansion of the renormalised equations, written as usual in terms of 
rescaled variables. Coming back to the primitive variables, one obtains 'effective 
equations' where the coupling constants are wavenumber dependent. In the context of 
the renormalisation group, a precise meaning is thus given to the phenomenological 
concepts of eddy viscosity, eddy diffusivity, eddy noise, turbulent Lorentz force,. . . . 

2. Reduced couplings 

For our purpose, the equations of motion for an incompressible conducting fluid are 
conveniently written in the form 

au/a t+AoB(u - V u ) =  voV2v+A@'(b * V b ) + f  

ab/at + A o  curl(u x b )  = voV2b + j  

where U and b are the velocity and magnetic fields respectively. B denotes the 
incompressibility projection operator, yo the viscosity and vo the magnetic diffusivity; 
A. and A b  are formal expansion parameters, eventually taken equal to unity. Equal 
expansion parameters are taken in front of the bilinear terms on the left-hand side of 
equations (1) because they remain proportional throughout the renormalisation (see 
0 3). f is a prescribed force and j' a magnetic driving which may be expressed in terms of 
prescribed currents. They are assumed to be independent, zero-mean, Gaussian 
random functions; their Fourier transforms have correlations given by 

( f m ( k ,  u ) f n ( k f ,  ~')>=2D~(2~)~+'9~(k)P,,,,(k)S(k+k')S(u + U ' )  ( 2 ~ )  

(Tm(k, W ) f n ( k ' ,  ~')>=2DOM(27~)~+'9~(k)Pmn(k)S(k +k')S(w + U ' )  ( 2 b )  

where d is the space dimension and 

P m n ( k )  = Smn -kmknlk2 (3) 

is the incompressibility projection operator. Dr and D? are positive and measure the 
intensity of the kinetic and magnetic energy injections at a reference scale A-'. We 
assume that the injection spectra per wavenumber 

F v ( k )  = &kd-'.Fv(k) (4a) 

F'(k) = Sdkd-'gM(k) ( 4 b )  

follow power laws in the limit k --* 0 

Fv(k)  - k-' 

F'(k) - k-' . 

with r = -3 + e v <  0 

with p = -3 + c M  s 0. 

In equations (4), Sd = 2 ~ ~ ' ~ / r ( d / 2 )  is the area of the d-dimensional unit sphere. No 
helicity (i.e. correlation between velocity and vorticity, or between magnetic field and 
potential vector) is assumed: helicity has a destabilising effect on the large scale 
magnetic field (Moffatt 1978), which probably leads to an inverse ca6cade (Pouquet er a1 
1976, Pouquet and Patterson 1978); this effect does not seem tractable by the RG 
(Pouquet et a1 1978). 
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To estimate the relative importance of the nonlinear terms at a given scale [-I, we 
rescale the problem using [-' as unit length and the viscous time as unit time; the 
amplitudes of the velocity and magnetic fields in the free problem are taken as unities. 
Equations ( 1 )  become 

(6b)  
ab 
-+G"2( [ ) (~  ~ V b - b  * V u ) = ~ o V ' b + j  
at 

where the somewhat improperly denoted electromotive force, curl(u X b) ,  has been 
rewritten as (U Vb - b Vb) .  Three reduced parameters appear: the advective coup- 
ling constant 

G ( [ )  = A 3 3 z ~ i ~ [ - ~ ~  = (7a )  
which in view of (6a)  can be considered as the squared kinetic Reynolds number at scale 
e-'; the inverse magnetic Prandtl number 

KO = ToYi' (7b)  

(7c)  x([) = A ~ A ~ D ~  qo yo 

and the magnetic coupling constant 
M -2 -1 - E ~  = x ~ [ - ~ ~ .  

The large-scale behaviour of the advective and magnetic coupling constants suggests a 
competition between two possible crossovers and a detailed analysis is thus required. 

3. Small-scale elimination and recursion relations 

Starting from the equations written in Fourier space (figure 1 )  with an ultraviolet cut-off 
at wavenumber A (taken as unity), the first step of the RG procedure consists in 
eliminating the small scales: the modes u'(k, w )  and b'(k, w ) ,  with e-' C k C 1 ,  are 
calculated in terms of the modes u C ( k ,  w )  and b'(k, w ) ,  with 0 < k C e-', to second order 
in A. and A& and substituted in the equation for U' and be. Many new couplings are 
generated. When only the couplings which can be relevant in the limit k + 0 are 
retained (Wilson and Kogut 1974, Ma 1973,1976) the equations satisfied by U' and b' 
(figure 2)  reduce to the primitive MHD equations with renormalised coefficients 
(henceforth referred to by the subscript I). 

The viscosity is enhanced under the effect of kinetic and magnetic small scales, and 
becomes 

Here 

and 
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Figure 1. Diagrammatic representation of the MHD equations. The Fourier transform 
u(k, U )  of a field u(x, t) is defined by U(&, t )  = Jdx dw u(x, I) expfi(wt- R * XI]. 

In the renormalised magnetic diffusivity 

the kinetic contribution 

d - 1  s d  Go 
(Y?(Go, KO)=-- 

d ( 2 ~ ) ~  K O ( ~  + K O )  

corresponds to a damping, while the magnetic contribution 
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& -  

Figure 2. Equations for U'(&, w )  and be(&, U )  with (kl <e-'. Dashed propagators indicate 
that the corresponding wavenumber belongs to the shell e-' e q s 1. The correlation of the 
small scale forces and currents is represented by 

k . " T , . d  = (fm(kt Olf"(k', 0')) 

tW-E,.,,= (id&, w)iAk', U')) .  

Only the possibly relevant terms in the limit k -+ 0 have been retained; fluctuations of 
random operators have thus been nzglected. Broken-line boxes contain the renor- 
malisation of inertial force and electromotive force, which are found to be non-relevant; the 
solid-line box contains the renormaiisation of the Lorentz force (which may be relevant). 



1398 J-D Fournier, P-L Sulem and A Pouquet 

is negative and thus destabilising in dimensions d C 3; in two dimensions, this effect was 
already noted in the closure context (Pouquet 1978). 

The source terms generated by the small scales in the equation for U <  have 
correlation functions which behave like k2 for k + 0; the corresponding inputs per 
wavenumber are thus proportional to kd+l .  The relevance/irrelevance of these 'eddy 
noises' (Rose 1977) leads to the following classification: 

models R (no renormalisation of the kinetic driving) 

r > -(d + 1) Dy = Dy. 

models A (renormalisation of the kinetic driving) 

r = - ( d +  1) 

Here 

and 

models C v: r < -(d + 1). The large scale properties of models Cv identify with those of 
model A", as it appears when the small scale elimination is iterated (Forster et a1 1977). 

Similarly, the correlation of the eddy noise which arises in the b <-equation behaves 
like ( d - 2 ) k 2 + O ( k 4 ) .  It is negative for d < 2 .  This makes the continuation of the 
equations to dimensions d < 2, already questioned for fluid turbulence (Frisch et a1 
1976), strongly problematic in MHD. The following classification results: 

models R (no renormalisation of the magnetic driving) 

withp > - (d  + 1'1 d > 2  

or of" = DY 
d = 2  with p > -5 

models AM (renormalisation of the magnetic driving) 

d > 2  withp = -(d +1)1  

or 

d = 2  withp=-5 J 
with for d > 2 and p = -(1 + d )  

2(d-2)Sd Go 
d ( 2 ~ ) ~  K O ( ~  +KO) &"(Go, KO) = 
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and fo rd  = 2  and p = - 5  

Again the models CM (magnetic driving weaker than in models AM) are in the 
universality classes of the corresponding models AM. 

The renormalisation of the vertices arising in the left-hand side of equations ( 1 )  is 
negligible when compared with the bare vertices (see figure 2), which thus remain 
unchanged: 

h ~ = A o .  (12) 

The elimination of the small scales preserves indeed both the Galilean invariance 
(Forster et a1 1976, de Dominicis and Martin 1979), and the expression of the 
electromotive force. In contrast, the vertex associated to the Lorentz force is renor- 
malised by two contributions with opposite signs: 

wherein 

and 

The second step of the RG procedure consists in rescaling wavenumbers, frequencies 
and fields: 

R = k e ’  
1 

(3 = w exp lo z(1‘) dl’ 

I 1 

uc(k, w )  = C ( k :  (3) exp lo ~ ( 1 ’ )  dl’ b<(k, w )  = 6(&, (3) exp jo v(f‘) df’. (14) 

This induces scalings on the drivings 
1 

f(L, (3) = f c (k ,  w )  exp ( Z ( i ’ ) - T ( f ’ ) )  dl’ lo 
j(k: (3) =j‘(k, w )  exp 

and on the couplings 
1 

v(1) = VI exp jo ( z ( f ‘ ) - 2 )  dl‘ 

T (0 = TI exp lo ( z  U’) - 2) df’ 
1 
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1 

Dv(l) =Dy exp [ 3 . ~ ( 1 ' ) - 2 ~ ( 1 ' ) + ( r + d + l ) + ( d - 2 ) ] d l '  

OM(/) =Or" exp 

A (1) = A I  exp io [ ~ ( l ' )  - (d + l)] dl' 

A ' ( l ) = A f  exp Io [ 2 u ( l ' ) - ~ ( l ' ) - ( d + l ) ] d l ' .  

1 

b 
I, [3t(l')-20-(l') + ( p  + d  + 1)+ (d  -2)] dl' 

I 

I 

Combining (8)-(16) and replacing 1 by an infinitesimal parameter, we obtain differential 
recursion relations for the running coupling constants: 

models RV dDV/dl =Dv[3z -2 + E ~ +  2(d - 2)] (17a) 

models RM 

models AV dDV/dl=DV[3z-2+(d-2)+aGv(G)+a~V(X, K, G)] (176) 

dDM/dl =DM[3z -20- + E ~  + 2(d - 2)] (17c) 

models AM dDM/dl = DM[3z - 2 ~  + d -2+aG"(G, K)] f o r d > 2  (17d) 

dDM/dl =D'[3z - 2 ~ - 2 + a e " ( G ,  K)] for d = 2 (17e) 

and for all the models 

dv/dl = U [ Z  -2+a;(G)+aL(X)] (17f) 

d ~ / d l = g [ ~ - 2 + a ; ( G ,  K)+(Yz(X)] (17g) 

dA/dl= A [T - (d + l)] (17h) 

dh'/dl = A ' [ ~ o - - T -  (d + 1) +a$(G, K ) + ~ $ ( X ) J  (17i) 

The anomalous dimensions a are expressed in terms of the reduced parameters 
(equations (8)-(13)) which at the lowest order satisfy: 

models RV dG/dl= G [ E ~  - 3a; (G) - 3aL(X)] (18a) 

(18b) 

-aL(X)-2a;(G, ~ ) - 2 a & ( X ,  K)] (18c) 

models AV 

models RM 

dG/dl = G[(2 - d) + a:" (G) + a:" (X, K ,  G) - 3a t; (G) - 3a L (X)] 

dX/dl = X[ cM + a$ (X) + a$ (G, K )  -a; (G) 

models AM 
d > 2  dX/dl = X[(2 - d) + aeM (G, K )  + a$ (X) + a$ (G, K )  

-a; (G) -ab (X) - 2a;l.(G, K )  - 2az(X, K ) ]  (18d) 

d = 2  dX/dl = X[-2 + aeM (G, K )  + a$ (X) + a$ (G, K )  

-a; (G) - 2a; (G, K )  - 2a& (x,  K ) ] .  (18e) 

Besides, for all the models 

dK/dl= K [a 7 (G, K )  + a 6 (G, K ) - a! (G) - L (XI]. (18f 1 
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4. Trivial and kinetic regimes 

A naive analysis neglecting renormalisation suggests that, if the magnetic energy is 
negligible when compared with the kinetic energy, the Lorentz force is irrelevant. The 
magnetic field then behaves as a passive vector, advected by turbulence. 

When the Lorentz force is dropped out (a constraint preserved by renormalisation ), 
two reduced parameters remain: the inverse Prandtl number K ,  which for d 3 2  and 
ev  L (2  - d )  obeys 

and the advective coupling constant G which satisfies a model-dependent equation. 
InthemodeZsR” ( d r 2 ; e V > 2 - d )  

dG/dl= G [ e v - 3 ~ ; ( G ) ] .  (20)  
The crossover parameter ev governs the topology of the flow (see figure 3): 

K K 

Figure 3. Flow diagrams of the reduced parameters in the passive regimes. G is the square 
Reynolds number and K the inverse magnetic Prandtl number. The magnetic driving does 
not affect the flow diagrams. These flows also remain qualitatively the same whether or not 
the external force is renormalised. ( a )  corresponds to the non-trivial side of the crossover 
( E ~ > O  in models Rv) (kinetic regime), (b )  to the marginal case ( E ~ =  0 in models RV or 
d = 2 in models AV); in both cases a universal Prandtl number is obtained; to the lowest 
order in the crossover parameter, its inverse reads K* = $(-l+ (1 + 8(d + 2) /d )” * ) ;  ( c )  in the 
trivial case (ev 0 in models RV; d > 2 in models A”), universality is broken. 

(i) For (small) e v >  0, G is exponentially driven to 

( 2 ~ ) ~  2(d + 2 )  G * = - -  
s d  3 ( d - 1 ) &  

and the anomalous dimension of viscosity is given by 

cub(G,) =$ev. 
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The inverse Prandtl number K has a universal limit which, at t b  lowest order in E ~ ,  

reads 

~ * ( d )  =$[-1+(1+8(d +2)/d)"2]. (23) 

(ii) For E" = 0, 

2(d + 2) (27dd 1 
G(1) -- - - 

3(d-1) Sd 1 

ab(G(I))- 1/31 (25 )  

and K is still driven to K * ;  universality is thus preserved in the marginal case. 
(iii) For d > 2 and 2 - d < eV < 0, G goes exponential@ to zero; the nonlinear 

effects are negligible in the infrared limit, and the whole line G = 0 is stable; this 
degeneracy makes the universality break down: the limiting Prandtl number depends 
on the bare parameters (see figure 3c). 

In models A", the kinetic modes are in thermal equilibrium, and a fluctuation 
dissipation theorem holds for the velocity field. This implies equality of the anomalous 
dimensions of noise a:" and of dissipation ab. For d 3 2 and cV = 2 -d, equation 
(18b) thus reads: 

dG/dl= G[(2-d)-2~tb(G)]. (26) 

The flows are qualitatively similar to those of the model R", with (2 - d )  for crossover 
parameter: 

(i) For d = 2 ,  when 1+00 

G( I )  - 8 r / l  

ab(1)- 1/21 

and K has the same limit as in model R" (see figure 3b): 

~ * ( d  = 2) = $(-l+ 171'2). (29) 

The same universal Prandtl number was obtained by Forster et a1 (1977) for a passive 
scalar advected by a two-dimensional flow at thermal equilibrium, with deterministic 
initial concentration and no source of passive scalar. 

(ii) For d > 2, the situation is analogous to that described in (iii) for the model R" 
(see figure 3c). 

Returning to the parameters Y, 7, Dv, DM and A, we choose the scaling factors z, T 

and U defined in equations (14), in such a way that v, Dv and DM remain fixed. This 
ensures that A ( 1 )  = G1"(l)(v3/D")''' goes to zero, or to a value O(JT) ,  and that 
~ ( 1 )  = K ( I ) v  has a finite limit ~(co) .  When 1 -* 00, the nonlinear terms of the equations 
satisfied by the rescaled fields thus vanish or are of order O @ )  when evaluated at 
wavenumber k = 0(1) and compared with the linear terms. They are thus negligible at 
the lowest order in E .  Coming back to the original variables, we obtain effective 
equations for velocity and magnetic fields at wavenumber k = e-' and frequency w : 

[-iw + v (k )k2]u(k ,  U )  =f(k, w )  

[-iw +77(k)k2]b(k,  w )  = j ( k ,  w )  
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where f and 1 are white noise in time which satisfy 

(p(k, o)12) = ~ v ( k ) k 4 - d - = ~  

( ~ j ( k ,  0 ) 1 2 ) ~ ~ ~ ( k ) k 4 - d - = M .  

In the trivial cases (model RV with ev  0, or model AV with d > 2), 

v(k) - T ( k ) K k O  (31) 

and the characteristic frequencies scale like k2. In the marginal cases, log corrections 
occur: 

models RV d >2, e v =  0 v ( k )  -rl(k)Cw:(log 1/w113 (32a) 

models AV d = 2, ev = 0 v ( k ) - ~ ( k ) a ( l o g  l/&)1/2. (32b) 

In the non-trivial case (models RV with ev  > 0) the renormalised transport coefficients 
scale as 

with exponents prescribed by the kinetic forcing only; we shall refer to this regime as the 
'kinetic regime'. 

For all the passive regimes, the long-time behaviour of the correlation functions is 
thus independent of the magnetic driving. However, the spatial correlations of the 
magnetic field depend on both eV and eM. Table 1 gives the kinetic and magnetic 
energy spectra EV(k)  and EM@), obtained by integration of (lu(k, w)I2) and (Ib(k, o)I2) 
over the frequency o and over the sphere of radius Ikl. (See also figures 5 . )  

ModelRVRM:eV>2-d and{eM>-2if d=2};{e'>(2-d)if d>2}. 

The kinetic and magnetic energy spectra result from a balance between external 
drivings and renormalised dissipation or diffusion. 

ModelAVRM: e V = 2 - d  and{e'>-2if d=2};{eM>(2-d)if d>2}. 

The anomalous dimensions of force intensity and viscosity are equal. Detailed balance 
holds and the kinetic energy is equally distributed among the Fourier modes; in contrast 
the magnetic spectrum results from an equilibrium between (external) current and 
(renormalised) diffusion. A log dependence is obtained in dimension d = 2. 

ModelAVAM for d > 2 :  e V = 2 - d ;  eM=(2-d).  

All the possible anomalous dimensions are exponentially driven to zero; the energy 
spectra correspond to equipartition of both kinetic and magnetic energies. 

ModelAVAMford=2: eV=0,eM=-2.  

The statistics of the velocity field is the same as in model A R . In the equation for the 
magnetic field, the anomalous dimensions of the diffusion, a?, and of the current 
intensity, aV , are equal (see equations (9a) and (1 Id) with d = 2); the log correction of 
the model AVRM thus disappears. The magnetic spectrum is proportional to k3, 
corresponding to an equipartition of the mean squared potential vector a (b = V x a )  
which is an invariant of the two-dimensional inviscid MHD equations. This is consistent 
with the absolute equilibrium distributions derived by Fyfe and Montgomery (1976) 
from an ultraviolet truncated version of the MHD equations with no force and no 
dissipation. 

v ( k )  - T(k) - k-ev/3 (33) 

V M  

D M  
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Figure 4. Trajectory of the fixed point in the (G, K) plane for the kinetic regime of model 
RvRM when the space dimension d varies. e" is fixed to a small positive value. To include 
the limit d +ao, the reduced coupling G is scaled by a factor !3,/(2~)~s". The fixed points 
are labelled by the critical value a,(d) of a = e'/IeVI for which they become unstable in the 
transverse direction. 

ModelRVAM:eV>2-d,and{eM=-2if d=2} ; {c '=2-d  if d > 2 } .  

The kinetic spectrum is the same as in the model RVRM. In dimension two, the 
magnetic spectrum corresponds to an equipartition of mean squared potential vector. 
In dimension d > 2 for weak kinetic forcing (cv < O), equipartition of magnetic energy 
holds; but for e V >  0, the small kinetic scales generate a relevant 'magnetic noise', 
without an a priori relation with the 'turbulent diffusion'; the magnetic spectrum then 
depends on the precise expression of the anomalous dimensions. Note that the 
correction to equipartition disappears in dimension 3, where renormalised diffusion 
and magnetic noise have the same scaling behaviour. 

Let us now investigate the persistence of the above scaling and universality results 
when the Lorentz coupling is restored. When linearised around one of the fixed points 
(GF, KF, XF = 0) stable in the passive vector problem, the recursion relations read 

where p1 and p2 are negative or zero. The stability is thus governed by the sign of p3. 

Models AM. For d = 2, the magnetic coupling X is driven to zero (see equation ( 1 8 ~ ) ) .  
For d > 2,  equation (18d) thus yields 

p3 = (2 - d )  i- KF)  -t a$ (GF, K F ) - ( Y ~  (GF)  - 2 a ? ( G ~ ,  KF). 
So, when cV s 0, GF is zero and p3 = 2 - d is negative. When E"> 0, 

and 
crt(G,) = a?(G,, K * )  = cv/3 

2 -d S d  --&v- G ,  d - 4 / 3  
p3 = 2 - d  -- 

d ( d + 2 )  (27r) K* d - 1  
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. . . . Negative exponent of E'tk) 
- - - Negative exponent of E v l k )  

. . . . Negative exponent of E M  (h)  
_ _  - ~ e g a t i v e  exponent of EV ~ k )  

114 113 1 116 
a = P /  IE'I 

I 
1 I 

I 

-- 
-1 a 

a = E"/ leV I 

Figure 5. Negative exponents of kinetic and magnetic energy spectra for k + 0, in model 
RVRM in dimension three, when a = ~ ~ / l s ~ I  varies. &"is fixed to a (small) positive value in 
( a )  and to a negative value in (b). Note the possible coexistence of the kinetic and magnetic 
regimes, and also the fact that in the three regimes the dominant energy may be kinetic or 
magnetic. In the magnetic regime, when E"(&) and EM(&) have the same exponent, they 
satisfy E ~ ( & ) / E ~ ( & )  - (eM)*. 

is also negative. It follows that all the fixed points of the models AM remain stable when 
the Lorentz force is reintroduced. As a consequence, the scaling relations and the 
universal values of the Prandtl number, obtained in the context of the passive vector, 
extend to the MHD problem. 

Models R M. Then 

/.&j=EM+&'(y(G~, KF)-(Y;(GF)-~(Y?(GF, KF) .  

M When GF = 0, M~ reduces to E . Consequently, in the case {E" < 0, E ~ <  0}, all the 
points of the line G = 0 are stable and universality is not restored. For E ~ >  0, these 
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fixed points are unstable in the transverse direction. When GF is positive, 

p3 = + a $ (G*, K * )  - E"; 

the stability is thus governed by the sign of a - a,(d) where 

a = E ~ / J E " I  (35) 
a,,(d) = 1 + (1 + ~ , ) 2 / 3 ( d  +2) (d  - 1) (36) 

and K*(d) is given by equation (23). In the range {E" > 0; 1 < a < a,(d)) the magnetic 
energy dominates the kinetic energy in the infrared limit while the Lorentz force is 
negligible. When d goes to infinity, this effect due to the renormalisation of the Lorentz 
force disappears: a,(d) -B 1 (see also figure 5(a) ) .  

As already noted (Foumier and Frisch 1978, Sulem eta1 1979), the eddy viscosity 
and the kinetic energy spectrum in the kinetic regime can readily be recovered using a 
dimensional argument of the Kolmogorov-Obukhov-Heisenberg type: the nonlinear 
interaction in the Navier-Stokes equation is modelised by a turbulent viscosity v ( k )  
expressed in terms of the local energy spectrum by 

v(k) - (E"(k)/k)"*. (37) 
The external injection F ( k )  - k3-ev permits the system to achieve a self-similar steady 
state where 

with an anomalous dimension 

A = E V / 3 .  (39) 
Equation (37) remains valid in a situation of thermal equilibrium with an equipartition 
energy spectrum. For d > 2, it gives 

v(k) - / p - 2 " 2  (40) 
in agreement with the RG prediction (Forster et a1 1977). 

Note that the iteration to a fixed point, implemented in the RG scheme, plays a part 
similar to the bootstrapping involved in equation (37). The lack of renormalisation of 
the inertial terms may actually be obtained non-perturbatively in a field theoretical 
formulation of the RG (see e.g. de Dominicis and Peliti 1978). This is then, through a 
Ward identity, a consequence of the Galilean invariance (de Dominicis and Martin 
1979). Hence, as long as the viscosity remains the unique renormalised coupling, its 
anomalous dimension is prescribed by dimensional constraints and need not be 
evaluated perturbatively (de Dominicis and Martin 1979). 

These remarks partially extend to the passive regimes of MHD: there is a unique 
characteristic time, and eddy viscosity and diffusivity are proportional. The magnetic 
spectrum is thus easily calculated when the magnetic driving is not renormalised or 
when a fluctuation dissipation theorem holds. This excludes in particular the model 
RvAM with positive E ", where the renormalised magnetic driving has no simple relation 
with the eddy diffusivity. The exponent of the magnetic energy spectrum is thus 
dependent on the space dimension and its prediction requires a more refined analysis, 
such as resorting to turbulence closure. Since no vertex corrections are involved in the 
passive regimes, all the RG results will be correctly given by the DIA. The test field 
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model (Kraichnan 1971, Sulem eta1 1975), a Markovianised form of the DIA, will also 
give the correct result. Other Markovian closures such as the eddy damped quasi- 
normal Markovian approximation (Orszag 1977, Rose and Sulem 1978) will also work, 
except at the crossover where they produce improper log corrections. This is so because 
the latter closure involves an eddy damping rate which does not properly incorporate 
eddy viscosity effects from very small scales. 

5. Meppreticre@me 

As seen in 0 4, the trivial and kinetic regimes are unstable when the intensity of the 
external current is strong enough. Can we try to guess if a 'magnetic regime' with 
dominant Lorentz force is established? Such a regime will be associated to a fixed point 
with G = 0 and X 'small'. Note that in dimension three, the magnetic contribution 
a3 (X, K )  to the anomalous dimension of diffusivity vanishes, then leading to an infinite 
turbulent Prandtl number K - ~  (see equation (18f)). For dimension d less than three, 
the magnetic small scales tend to destabilise the magnetic large scales by a negative 
contribution to the eddy diffusivity. This suggests existence of a possible critical 
dimension under which the magnetic regime disappears. In this section, we discuss the 
possible magnetic regimes according to the space dimension and source intensities. 

5.1. Dimension d = 3 

5.1.1. Model RVRM. Kinetic and magnetic drivings are not renormalised. This 
corresponds to e V  and - E ~  larger than (-1). Introducing U = G/K, the recursion 
relations become 

6--E x---] 1 u  
37T2 1 + K  

(41) 
dK 8 + s M  

K U K  -2 x] 
601r 

2 U--- 
4 + s M  6-cV 

2 x-- 607s 607s 157s ~ + 1  

For negative eM, the fixed point of the passive regime (X = 0) is always reached. In 
contrast, for positive eM the system (41) has also a magnetic fixed point which at the 
lowest order in eM (here the expansion parameter) reads: (U* = 0, K* = 0, X, = 
1 5 7 s ' ~ ~ ) .  When linearised around this magnetic fixed point, the recursion relations 
become 

-EV-4-EM 0 
(42) 

The stability thus requires eV < 4eM, with the additional conditions .zM 7 0 (existence of 
the fixed point) and ev  > -1 (definition of the model Rv). 

It is easily seen that the trivial, the kinetic and the magnetic fixed points are the only 
possibly stable fixed points of system (41). Note that the kinetic fixed point is stable for 
e'<O, or eM>O with small - ~ ~ 7 ( 1 / 1 . 1 6 ) - ~ ~ .  Thus for small positive eV and eM, 

x -x* 



Infrared properties of MHD turbulence 1409 

satisfying (1/1.16) < eV/cM<4, both fixed points are stable: universality is broken. 
Numerical integrations of the system (41) confirm that one or the other point can be 
reached, according to the values of the bare parameters (chosen of order E for 
consistency). Note that if the renormalisation of the Lorentz force is artificially 
dismissed (as in the DIA), the overlapping of the two stability conditions is decreased but 
not suppressed: when &(G, K )  and a $ ( X )  are dropped in equation (41), the stability 
of the passive regime requires cV>cM, the magnetic fixed point becomes X,, = 
(l5rr2/2) eM, and is stable for e V < h M .  

To derive the asymptotic (I + 00) MHD equations satisfied by the rescaled fields in the 
magnetic regime, we choose the scaling factors such that the intensity of the magnetic 
driving and the viscosity remain fixed. The difhsivity 7(I) = K ( I ) v ~  then goes to zero. 
We choose the third scaling factor in such a way that A (I) tends to zero at the same rate 
as ~ ~ ( 1 ) .  As a consequence, the Lorentz parameter A'(1 )  = X ( Z ) ( v ~ / D y ) ( q ~ ( l ) / h  (I)) 
has a limit A; of order eM and the forcing intensity Dv(I), which is proportional to 
U ( Z ) / K ~ ( I ) ,  behaves like e x p [ ( ~ ~ + 2 ~ ~ ) I ]  near the fixed point (see equation (42)). 

Let us first consider the case eV < - 2 ~ ~ .  All the parameters remain bounded and 
their asymptotic behaviour suggests that in the equations for the rescaled fields, at 
wavenumber k' = O(1): the inertial force is negligible when compared with the viscous 
force; the electromotive force is negligible when compared with the magnetic diffusion; 
the external force is asymptotically negligible when compared with the Lorentz force 
which acts as a source term for the velocity field, with an intensity proportional to ( E ~ ) ~ .  

Actually, several coupling parameters simultaneously go to zero, and among them 
the magnetic diffusivity. So the knowledge of the fixed point is not sufficient: the rate of 
convergence is also needed to discuss the relevance of the different terms. Further- 
more, to be complete, this discussion should not be based on the behaviour of the sole 
coupling parameters but should also take into account the amplitude of the fields. This 
does not change the conclusion in the case cV s - 2 ~ ~ .  

In the range ev > - 2 ~ ~  we choose scaling factors which keep DM, v and Dv at finite 
values. All the other parameters then go to zero as follows 

7 (I) - e x p ( - 2 ~ ~ 1 )  

A (I) -exp[&(eV- 3eM)z] (43) 
~ ' ( 1 )  -x, exp[-(3EV+eM)I]. 

We shall check a posteriori that we can neglect the external, inertial and electromotive 
forces. We thus solve the resulting equations in the form (tildes are omitted): 

b"(k, w ;  I )  =-[ uo(k, w ;  I )  = --< (44) 

(45) 

where 

MMM= (-iw +7(I)k2)-'  -- - (-iw + vok2)-' 
and the Lorentz vertex is proportional to A ' ( l ) .  This yields 

(Ib"(k, w ;  I ) I 2 )  dw -exp(2sMl) 

(lu"(k, w ;  l)l*) dw -Xi e x p [ ( 3 ~ ~ - ~ ~ ) 1 ] .  
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The amplitude and the characteristic time of the magnetic field thus increase 
indefinitely when l+m. As a consequence the correlation of the Lurentz force 
becomes frequency dependent and the dynamics of the velocity field is not prescribed 
by the sole renormalised viscosity. 

The above expansion is justified by comparing the effect on the energy spectra of the 
neglected and retained terms, all being calculated from uo and bo. Direct comparison of 
the different terms is not possible because of their frequency dependence. An example 
of calculation is given in the appendix. One finds that the contribution of the inertial 
force to the kinetic energy spectrum is proportional to Xt exp(-evl), while the 
contribution of the Lorentz force is proportional to Xi exp[(3eM-eV)l]; the contri- 
bution of the electromotive force to the magnetic energy spectrum behaves like 
Xi exp(2eMI). The approximations are thus consistent for eV<3eM. 

For stronger kinetic forcing (3eM < ev < 4e'), the Lorentz force contribution to the 
kinetic energy spectrum is dominated by the contribution of the external force which is 
O(1). The velocity field then results from a balance between (renormalised) dissipation 
and external forcing: 

vo(k, w ;  I )  = __C. (47) 
As before the contribution of the inertial force to the kinetic energy spectrum 
(proportional to exp[(-6eM + eV)l]) and that of the electromotive force to the magnetic 
spectrum (proportional to exp[(-2eM + ev)I]) are negligible. 

The partition of the range of existence and stability of the magnetic fixed point into 
three subranges 

I: -1 < eV< -2eM 11: - 2 ~ ~ s  eV<3cM 111: 3&M=z&V<4&M 

was convenient for the discussion of relevance; it is however easily checked that the 
relevant terms and thus the effective equations for the original fields are the same in the 
ranges I and 11. At wavenumber k = e-' and frequency w, these equations read 

(-iw + v (k )k2)u(k ,  w )  = 9 ( k ) P ( b  - V b ) ( k ,  w )  

(-iw + T ( k ) k 2 ) b ( k ,  w )  = j ( k ,  w )  

( 4 8 ~ )  

(48b) 

where A denotes Fourier transform and 

v ( k ) - k o  
v ( k )  - k - A  A = a K ( X , ) = 2 e M  (49) 

L=a$(X*)=& M * 9 ( k )  - EMkWL 

In range 111, the renormalised Lorentz force must be replaced by the external force 
f(k, w )  in equation (48a). Note that the absence of anomalous magnetic diffusion is 
specific of dimension three where ab(X,  K )  = 0: the magnetic field is then free; its 
energy spectrum reads 

E M ( k )  - k * - E M .  (50) 

-1 < E ~ < ~ E ~  EV(k)  - (eM)Zkl-EM. (51) 

The kinetic spectrum in ranges I and I1 is calculated in the eppendix; we find 

The magnetic and kinetic spectra thus have the same exponent, but their intensities 
differ by a factor O(sM)'; in the ranges I and 11, has no influence, the external force 
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being non-relevant. However, in range I11 the kinetic spectrum results from a balance 
between the external force and the viscosity, renormalised by the small magnetic scales. 
It follows that for 3eM s ev  e 4eM 

7 (52) E V ( ~ )  - k l - ~ v + ? e M .  

the kinetic energy thus dominates the magnetic energy in the k -P 0 limit and neverthe- 
less the transport coefficients in the large scales are determined by the magnetic small 
scales; again because of vertex renormalisation, the transition between the passive and 
magnetic regimes is not correctly predicted by comparing the kinetic and magnetic 
energy spectra (see figure 5).  

We finally note that when the Lorentz force is relevant, the DIA or any consistent 
second order closure such as the EDQNM leads to 

Y (53) 
a spectrum essentially prescribed by the non-local interactions. This result agrees with 
the prediction of the renormalisation group when the vertex renormalisation is arbi- 
trarily dropped: the RG then yields a fixed point with X,, = FX* and a& = E , stable if 
eV<2eM. For - l<eV<$sM,  the spectrum given in (53) is recovered. When the 
external force dominates the Lorentz force ($eM< eV<2eM), the spectrum reads 

1 - ~ M / 2  Ev(k) - k 

1 M 

(54) 
Note that in both ranges, the closure techniques predict a kinetic energy negligible when 
compared with the magnetic energy. 

E V ( ~ )  - ~ ~ - E V + E M  

5.1.2. Model AVRM. This corresponds to eV = -1 and cM> -1. The kinetic driving 
may be renormalised. To first order in e', the equation for U = G/K reads 

The equation for X is the same as in model RVRM. For negative eM, the passive regime 
is obtained; for positive eM, we look for a fixed point where U* and K* vanish at the first 
order in e'; this is compatible with equation (55 )  provided Y = X z / u  remains 
bounded. Indeed this ratio obeys the equation 

for which 
y -60 2 

U* = O(EM2) x* = O(EM) * - I T  (57) 
is a stable fixed point. The anomalous dimensions associated to the magnetic fixed point 
are the same as in model RVRM, except that the small magnetic scales renormalise the 
kinetic forcing with an anomalous dimension 

The corresponding contribution to the kinetic energy spectrum is thus proportional to 
and then nepgible when compared with the Lorentz force contribution 

(proportional to kl-' ). The physics of the model AVAM is thus identical to that of the 
ranges I and I1 of the model RVRM. 

k1+2EM 
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5.1.3. Models A "AM and R vA ". In this case cM = - 1 and the fixed point associated to 
the passive regime is always reached (see equation (18d) with d = 3). 

The competition between passive (trivial or kinetic) and magnetic regimes in 
dimension 3, for the different models, is summarised in figure 6. 

r LL 

?U 

m m m m  m m m m m m m m  

Model 
m m m m  m m m m m m m  

k _ * '  k 

m m m m  

-1 
t t t t t t t t t t  k .. k 

t t t t  L t t t t t k k k  

cv Rn 
t t t t t t t t t t  k k k  

t t t t t t t t t t  k k k  

k k k  :Trivial regime t t t t t t t t t t  

t t  r t  * t i - *  t t  -1 k k k  [ E K I W ~ I C  regime 
Model AV An' 

Magnettc regime t t t t  t t t t t t  k k k  

Model Model 
t t t t t t  k k k  

cvc': w CM 
t t t t  t t t t t t  k k k  

Figure 6. The different regimes obtained in dimension three according to the values of the 
crossover parameters e" and cM (defined by equations (5 ) ) .  In the trivial regime, all the 
nonlinear effects are negligible. In the kinetic regime, the magnetic field behaves as a 
passive vector, but coefficients are renormalised by the kinetic small scales. In the magnetic 
regime renormalisation is due to the magnetic small scales. Note that in the range 
4 < e'/cV <$, the Lorentz force is negligible even in the magnetic regime. The wavy line is 
a reminder of the validity limit of the RG calculation (when positive, e" and eM must be 
small). 

5.2. Dimension d = 2 

V M  5.2.1. Model R R , This corresponds to small positive E", and sM > -2; kinetic and 
magnetic driving are not renormalised. The equations for (U,  K,  X) read: 

-- U 
dl -16.rr [ 16m + $X - $U - $UK - U/ (1 + K ) + X/(1+ K )]. 
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The point associated to the kinetic regime is the sole possibly stable fixed point of this 
system. The crucial element is the sign of the last term in the third equation which 
comes from the (negative) contribution of the magnetic small scales to the renormalised 
magnetic diffusivity. Even when the kinetic fixed point is linearly stable ( e M <  1.42ev), 
this term can produce an indefinite growth of X .  This is easily seen when considering 
the example of bare parameters K O  and X o  which obey ( 1 6 m M +  ( K ~ + ~ ) X O / ( K ~ +  1 ) )  > 
0,  with small and uo = 0; in this case U remains zero and K and X become infinite 
with 1. In contrast, for finite negative eM and X 0 < 3 2 r r ( ~ ~ 1 / ( 1 8 + I s ~ I ) ,  dX/dZ is 
negative and, for all uo and K ~ ,  X is exponentially driven to zero, leading to the kinetic 
regime. 

This run-away has been numerically obtained for various bare parameters and 
different values of eM. When c M  increases, the bassin of attraction of the fixed point 
associated to the kinetic regime decreases, and finally reduces for cM = 1.427 E" to the 
plane X = 0. When E ~ >  1.427 eV,  the MHD problem has no stable fixed point; even if 
small at scale 0 ( 1 ) ,  the reduced nonlinear couplings grow indefinitely when k + 0, 
making the RG procedure self-defeating. A relation may be conjectured between the 
failure of the RG approach and the possible existence of an inverse cascade of magnetic 
potential (Fyfe and Montgomery 1976, Pouquet 1978). 

5.2.2. ModelAVRM(e = 0; e M  > -2). Recall that the fixedpointx = G = 0, K = K * ,  

is stable for eM < 0 and unstable when cM > 0. The equations for K and X are the same 
as in the model R R ; G obeys V M  

E= 
dl 81r 

G [ - G  -$(eM + 2)X + $ x 2 ~ / G ] .  (59) 

The exponential decrease of X obtained previously with finite negative e M  is still valid, 
and is consistent with an algebraic convergence of G towards zero; the last term of (59) 
is thus bounded, and the point associated to the passive regime is reached. There is no 
other stable fixed point, and for positive e M  run-away always occurs. 

V M  5.2.3. Models A A 
reached. 

and RvAM. c'= -2 which ensures that the passive regime is 

The competition between passive regimes and run-away in dimension two is 
summarised in figure 7 .  

5.3. Non-integer dimensions 

The strong difference between the results obtained in dimensions 2 and 3 when the 
Lorentz force is relevant, suggests the investigation of the case of non-integer dimen- 
sions; for simplicity we shall restrict ourselves to the model R R ( E  > O  and e'> 
(2  - d )  for d > 2, or eV > 0 and eM > -2 for d = 2) .  To deal with quantities which remain 
finite when d + m ,  we introduce the rescaled variables U'=(21r)~u/& and R= 
(21r)~X/Sd.  The recursion equations become 

V M V  

x - - -  
d 1 + ~  

d 2 - d - E V I  d - 1  U' d 2 + d - 4 + e M  - - = U '  & V _  U K - -  -- 
dU' dl ( d(d+2) d I + K  d ( d + 2 )  
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Figure 7. The different regimes in dimension two according to the values of the crossover 
parameters E" and (defined by equations (5)). Note that, even in presence of a stable 
regime, runaway of the figurative point may occur, making the RG self-defeating. 

(60) 
dK d - 1  U' d 2 - d - c V  d - 3  R d 2 + d - 4 + c M  
dl d I + K  2 d ( d + 2 )  

dx 

-= ( U'K +- -- K - - -  
d 1 + x  2 d ( d + 2 )  

d2-d -ev d-1 U' 
U'K-2- -  

2d(d + 2 )  d 1 + ~  

x - 2 - -  
2d(d + 2 )  d 1 + ~  

d 2 + d - 8 + c M  - - 

5.3.1. In dimensions close to 2, the only possibly stable fixed points are those 
associated with the passive regimes; divergence of the coupling constants occurs for 
certain bare values, while the passive fixed point is locally stable (eM s 0); this run-away 
can be explained by the influence of the fixed point A: 

A = (CA = 0, K A  = 0, XA = 5d2 -3d -32 

which for negative cM has positive coordinates if 2 9 d < d,  = 2.848 and is unstable in 
the direction U' = K = 0. This point goes to infinity as d tends to d,. 

5.3.2. For d > d,, the point A has positive coordinates if cM is positive; for d = 3, it 
yields the magnetic regime described in § 5.1.1. When linearised around this point the 
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recursion equations read 

4(d2 - 5 ) ~ ~  
5d2-3d -32 

d/ dl tl  O 
S 

0 

dz-3d  -8 
5d2-3d-32 

Eh 

The existence and stability conditions thus read 

2.8-dc<d <dL -4.701 

E'>O 

EV<EM/UA(d) 

where 

aA(d)=(5d2-3d -32)/4(d2-5).  

t 

0 6  

O K  

-EM 

When d increases from d,  to dL, the stability of the fixed point A thus requires stronger 
conditions on the kinetic forcing: aA(dc) = 0; aA(3) = $; and a A ( d f )  ~ 0 . 9 4 1 .  

The transport coefficients are renormalised according to 

2(d + 2)cM 
5d2-3d-32  

q ( k )  - k-r  withr=(d-3) 

v ( k )  - k - A  with A 
d2+d-4  

5dz-3d-32' 

The magnetic diffusive time is thus larger than the viscous time, as long as 2(d -3)(d + 
2)  < d2  + d -4,  a condition insured by d < d6. When d approaches d f ,  the viscous time 
catches up with the diffusive time. The renormalisation of the Lorentz force also 
depends on dimension: 

2'( k )  CC eM k-L 

with 

4 M 

5dZ-3d-32& * 
L =  

5.3.3, The catching up of the viscous and diffusive times when d approaches dL 
suggests that we look for a magnetic fixed point B with a finite Prandtl number when 
d > d:. It reads 

d Z  -3d -8 
d z + d - 4  

and has positive coordinates if sM is positive and d > d:. The points B and A coincide 
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for d = d:. When linearised around the point B, the recursion equations become 

J-D Fournier, P-L Sulem and A Pouquet 

I 2 " ' . I = .  - 2 B  

(d2-d-4)EM 
3d2+3d - 16 

- t 

t' 

0 0 

(dz -3d -8)(d2 + d - 4 ) ~ "  
2(3d2 + 3d - 16)(d +2)(d  - 3) 

M 
--E . t I f  

The stability condition is 

4 = I -  3d2+3d - 16 
3(&+&4) 3(d2+d-4)'  

aB(d)  is equal to a ~ ( d : )  = 0.941 for d = d:  and tends to unity when d goes to infinity. 
In sufficiently high dimensions, a magnetic regime with finite Prandtl number can 

thus compete with the kinetic regime if uB(d)  6 a s a,&). The evolution of the fixed 
points A and B when d increases from d, = 2.8 to infinity is shown in figure 8. 

5.3.4. We finally turn to the limit d -* W. The rescaled recursion equations (60) take 
the asymptotic form 

The fixed point corresponding to the trivial regime (2 = U' = 0) is reached for negative 
c V  and eM, The other possibly stable fixed points belong to the attractive plane K = 1: 

(i) the kinetic fixed point (U' = $zV, K = 1 , R  = 0) is the limit of the point studied in 
0 4. It is the only stable fixed point for ~ ~ 2 0 ,  e'C eV; 

(ii) the magnetic fixed point (U' = 0, K = 1,* = $ E " )  is the limit of the point B. It is 
the only stable fixed point for eM 2 0, cV < E";  

(iii) finally for E = eM > 0, there appears a line of stable fixed points {ri +I? = $6 v; 
K = l}, which connects the kinetic and magnetic points (see figure 9). 

As already mentioned, the Lorentz vertex corrections vanish when d -* 00, and the 
transition from kinetic to magnetic regime is correctly predicted by the naive analysis 
(a,(co) = aB(co) = 1). Except for the linear regime and for the border-line case = 
E" > 0, universality is restored; the universal turbulent Prandtl number is always equal 
to unity. 
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Figure 9. The stable non-trivial fixed points in the limit d + m. For > 0, a line of 
fixed point connects the kinetic and magnetic fixed points which exchange their stability 
(model RVRM). Note the universality of the Prandtl number which for all these fixed points 
is equal to unity. 

= 

6. Summery 

Infrared properties of MHD turbulence, stirred by random forces and currents, have 
been studied using the renormalisation group. The recursion equations may be 
continued analytically to non-integer space dimensions but realisability constraints 
limit the dimension to d 32. Different regimes are obtained according to space 
dimension, external drivings and in some cases fluid characteristics: a trivial regime 
where all the nonlinear couplings are negligible; a kinetic regime where the magnetic 
field behaves as a passive vector advected by turbulence; a magnetic regime where the 
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Lorentz force is manageably small and where the advection is negligible. Besides, in 
dimension 2 or close to 2, the renormalised coupling constants may diverge, which 
makes the RG procedure self-defeating. 

The trivial and kinetic regimes exist in any space dimension. They correspond to a 
balance between kinetic and magnetic driving on the one hand, and viscous dissipation 
and magnetic diffusion on the other. In the kinetic regime, the transport coefficients, 
and possibly also the driving terms, are renormalised by the kinetic small scales. 
Turbulent viscosity and diffusivity then have the same scaling. In addition, the 
turbulent magnetic Prandtl number has a universal value which at the lowest order in E" 

depends on space dimension only and tends to 1 when d + 00. 

The magnetic regime is found only for dimensions d > d, = 2.8. The effect of the 
kinetic small scales on the large scales is negligible and the renormalisation of the 
coupling (among them the Lorentz force) is only due to the magnetic small scales. 
(Possibly renormalised) magnetic diffusion and viscous dissipation balance respectively 
the magnetic driving and the Lorentz or the external force. The turbulent Prandtl 
number is infinite for d,  C d C d: =: 4.7, while for d > d;, it has a finite value which tends 
to 1 as d+m. 

No magnetic regime can be computed by the RG for d < d, -- 2.8: in dimension d C 3, 
the contribution of the magnetic small scales to the turbulent diffusivity is negative and 
thus tends to destabilise the magnetic large scales. The kinetic and trivial regimes 
survive nevertheless but for a range of parameters which shrinks when the dimension 
decreases. In dimension close to two the electromotive force produces unbounded 
nonlinear effects in the large scales, no matter how small the Reynolds number at the 
reference scale. In dimension 2, similar behaviour is obtained for sufficiently large 
magnetic interaction parameter. This effect is possiblyrelated to the infrared cascade of 
magnetic potential, conjectured for two-dimensional MHD by Fyfe and Montgomery 
(1976) on the basis of absolute equilibrium and by Pouquet (1978) from closure 
calculations. Such a situation is not within the scope of the renormalisation techniques 
which, for self-consistency, demand that the renormalised nonlinear couplings tend 
asymptotically either to zero or to a manageably small value. 
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Appendix 

For space dimension d = 3, we go into the details of the calculation of the kinetic energy 
spectrum when the Lorentz force is relevant. The. contribution of the Lorentz vertex 
renormalisation is printed in script. We have: 
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After integration over the internal frequencies, we obtain 

Here 

and the coefficient akW results from tensorial contraction. The change of variables 
p = IklP, q = Ikl Q, w = k252 yields 

with 

One first integrates over 52, which gives 

To evaluate this integral, we make another change of variables 
Q - - &-eM!21g-eM/2q k / k  = k-EM/2R-EM/2i 

- E "I2@ 
p = & - E M f 2  

which gives 

When k -* 0, this last integral tends to 

which is finite. 
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